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Abstract —The rigorous calculation of electromagnetic properties of 1.0 ‘

peridIc meshes using moment methods requires considerable afgebraic

~~ T

.-
+

work and computer resources. In this paper, a number of easy to use ~ 0.8
+.

+ .W

approximation techniques for anafyzing thin structures with wtuare, rectan.
+,4’o

z :,6

gular, and circular holes are presented. Formulas for the effective imped- ~ 0.6

ante of these meshes are deseribed which can easily take into account
~
z

oblique incidence and the presence of a dieleebic snbstrate. In addition, g 0.4
6 Riaorous Monomodal

techniques for anafyzing more complex-shaped apertures such as a cross

are dkeussed. These methods are more- ;ccurate tlmn existing approxima-

tion techniques and can be applied to a wide range of situations that could
not be handled before.

I. INTRODUCTION

PERIODIC MESHES are becoming increasingly im-

portant in the construction of microwave systems

[1]-[4]. To design these systems efficiently, it is essential to

be able to accurately predict mesh properties. The diffrac-

tion properties of meshes maybe calculated very accurately

using the method of moments [5]–[7] in which the electro-

magnetic fields are expanded in terms of Floquet and

waveguide modes. Unfortunately, this method produces a

relatively complicated set of equations which must be

solved using a large computer. The difficulties involved

with the rigorous moment method has led to the develop-

ment of approximate methods for studying these meshes

[8], [9].

A thin mesh may be modeled exactly by an impedance

shunted across a transmission line. The equivalent-circuit

model developed by Marcuvitz and later by Ulrich [2], [10],

[11] was one of the first approximation methods for calcu-

lating the equivalent shunt impedance of singly and doubly

periodic structures. This method is widely used because of

its simplicity but has many limitations. For a mesh with

square holes, the inductance is estimated by assuming its

long wavelength behavior is like a strip grating whose

inductance can be calculated using a conformal mapping

[12]. The capacitance is chosen so that the free-space

resonant wavelength is equal to the grid period. This

approach has several limitations. The inductance and reso-
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Fig. 1. Transmittance curves for normally incident radiation on a mesh
with varying thicknesses. The mesh is characterized by a period ‘g,
thickness /, and a square hole size c. The monomodaf calculations [3]
make a good approximation to the rigorous calculations [7] for thick-
nesses >0.10 g.

nance estimate are both very inaccurate, particularly when

the squares are small and a dielectric is present. In ad-

dition, the circuit model can only be applied to a small

number of geometries-strips or square holes with 90°

periodicity axes at normal incidence. For thick meshes,

good results have been obtained using methods based on

the assumption that most of the energy is carried by one

waveguide mode, all other modes being cut off [3]. For thin

meshes, the monomodal approximation is good only at

long wavelengths (see Fig. 1) because evanescent wave-

guide modes can carry energy through the mesh. If the hole

shape is anything other than a rectangle, circle, or strip,

moment methods that use waveguide modes as basis func-

tions become complicated because the field can no longer

be described in terms of simple waveguide modes [13]. The

following sections present a number of approximation

techniques for thin meshes which overcome the above

limitations. The accuracy of the techniques will be dis-

played by comparing the results with rigorous solutions. .
that are known_ to

ment [3].

II.

Meshes may be

give excellent agreement with experi-

BACKGROUND THEORY

classified as inductive or capacitive

according to the long wavelength behavior of their equiv-
alent shunt impedance. For the inductive and capacitive

meshes of Fig. 2 at an air-dielectric interface (refractive

index n), the equivalent circuit model of Ulrich predicts
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INDUCTIVE MESH CAPACITIVE MESH

Fig. 2. Geometry of inductive and capacitive meshes with square holes

and periodicity axes inclined at 90°.

the following formula for energy transmittance [2], [12]:

T=
4n

()(I+n)’+ * 2

X1 –1

—.—

z (@oW)(:-:
)

(1)

‘=1n(c0sec3
where ~ = g/A is the normalized

(2)

frequency and tin is the
resonant fr;quency. The values X1/Z and- Xc/Z ‘me the

inductive and capacitive impedances normalized to the

impedance of free space Z. At long wavelengths (o ~ O),

these impedances reduce to the strip grating impedances

[12]

X*
—=(JW
z

xc -2

z
—(4UW)-’.

‘=l+n’
(3)

Note that X1/Z is unaffected by the presence of a dielec-

tric and Xc/Z transforms like two capacitors in parallel.

For perfectly conducting meshes of infinitesimal thick-

ness, the method of moments reduces to the following

equations [5], [6]:

For the inductive mesh; the Fm represent expansion coeffi-

cients for the electric field where

.
)~*M@

yMm = Z k ($pqr + Ypqr pqr P9r

pqr=l

.

Cp;r = Ll @;qr.ffm (6)
aperture

and, for the capacitive mesh, the Fm are coefficients in the

current expansion with

2

1“ = ~ Am,
toil,

~=1 (her + Yoor) ‘R’

Dp;r = u @;qr. Em,
aperture

(7)

The @Pq, are the Floquet modes, the W rn waveguide aper-

ture modes, Em are current modes and the .$Pq, and Ypq,

are the admittance of the Floquet modes on the two sides

of the mesh [5], [6]. The A W, are the coefficients of the

incident field (r = 1 is TE and r = 2 is TM). The solution

of these equations involves the calculation of the integrals

C or D and the inversion of matrix Y whose elements are

complex numbers. This requires considerable time and

commter resources but can be made much easier by mak-.
ing a few simple approximations.

At wavelengths much longer than the grid period, the

matrix Y becomes dominated by the diagonal elements

and the elements related to the primary mode (m = O say).

Discarding all other terms results in a set of refined mono-

modal equations that may be solved analytically to yield

the following expression for FO [5]:

Io– ~ G
m

F.=
m#O

(8)
y(xl _ ~ -ym”o

m
m#o

This may be used to calculate transmittance in a form

which reduces to (1) and provides a considerably more

accurate estimation of the long wavelength impedance than

(3). For a TE incident wave, in the limit when the primary

mode dominates, the terms in the sum of (8) are small and

the impedance reduces to (2) with

Pq

(9)

The ap and ypq describe the spatial dependence of the

Floquet modes [71, and the Z’ denotes the p = O q = O term
is not summed. This equation provides a very general and

accurate long wavelength mesh impedance for use with (l).

In addition, this analysis can be used to make a good

estimate of the frequency at which the mesh becomes

resonant. Numerical studies show that at approximately

the resonant frequency the matrix element YOO becomes

real so that X1 a W a l/lm ( Yw) becomes infinite. Equa-

tion (9) expresses the long wavelength inductance in terms

of a homogeneous, stationary function of the aperture

field. The following section will illustrate the accuracy and

versatility of this monomodal impedance method.
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Fig. 3. Comparison atnormal incidence of monomodal impedance and
circuit model transmission curves with rigorous moment solutions.

III. CALCULATIONS

To check the approximation results, rigorous calcula-

tions [6], [7] were made using all waveguide modes up to

TE5~ and TM5~. F
All Floquet modes up to aP + yP~ <

ll(2m/g) were included. The addition of more modes

made no significant change in the transmittance values.

The results were checked using conservation of energy,

Babinet’s principle, and reciprocity and are estimated to be

accurate to better than +0.02 in the transmittance. When

analyzing meshes with narrow metal strips (c/g > 0.9), it

was found that a much larger number of TE/TM modes

were required to simulate the singularities at the metal

edges.

Fig. 3 demonstrates the monomodal impedance formula

(9) for a freestanding mesh with square holes. The funda-

mental propagating mode in the aperture is the TEIO

mode. The sum over Floquet modes in (9) converges rapidly.

For the results presented, p and q are summed from – 11

to + 11. The monomodal formula gives a better estimation

of impedance than Ulrich’s circuit model [1], [2] and pro-

vides better overall transmittance predictions. Further-

more, as the strips become wider, Ulrich’s equivalent-cir-

cuit model becomes more inaccurate because the circuit

impedance estimate gets worse and the resonance occurs at

longer wavelengths further from the grid period. On the

other hand, the monomodal impedance estimation (9) be-

comes better, and the resonant frequency can always be

accurately calculated. The monomodal impedance method

allows the accurate calculations of transmission curves

without large mainframes and long run times. Typical run

times on a VAX 11-750 are 60 s for a complete transmiss-

ion curve.

The transmission curve of Fig, 4 is for a mesh with

periodicity axes inclined at 45°. Such a structure cannot be

analyzed with Ulrich’s equivalent-circuit theory. The re-

fined monomodal treatment gives an excellent impedance

value and a good estimate of the resonant frequency ( Ym

purely real). Fig. 5 shows’ the same mesh for TE radiation
incident at 450 — oblique incidence is another situation

that could not be properly accounted for with existing

circuit theory. At oblique incidence, the transmission for-

mula (1) is modified since the impedance of a TE wave

changes from Z to Z/cos ( O), where 8 is the angle that the
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Fig. 4. Transmittance curve for a square mesh at normal incidence with

periodicity axes inclined at 45° comparing the rigorous solution (solid
line) to the monomodal impedance approach(o).
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Fig. 5. Transmittance curve for a square mesh with periodicity axes
inclined at 450 and radiation incident at 450 comparing the rigorous
solution (solid line) to the monomodal impedance approach (o).

magnetic field makes to the plane of the mesh. If 01 and 61

are the incident and transmitted angles then (1) becomes

4ncos(d,)cos(e,)
T= (lo)

[Cos(e,)+ncos(et)] ’+(;)’”

A similar formula for a TM incident wave may be derived

by using Z. cos ( O) for the transmission-line impedance.

The monomodal impedance method can also take into

account the presence of a dielectric. Fig. 6 shows the

transmittance curve for a mesh at a dielectric interface. The

long wavelength inductive mesh impedance is unchanged.

The dielectric alters the characteristic impedance on the

transmission side of the structure and shifts the resonant

wavelength. By modifying the transmission-line impedance,

it is also a simple matter to consider a dielectric slab [5]

and allow for absorption loss in the dielectric. This im-
proved impedance formula can also be applied to circular

holes or to any shaped hole or metal plate where the

primary energy transmission mode can be calculated. If a

more accurate estimation of the impedance is required then

more terms in the sum of (8) maybe included.

The refined monomodal formula becomes inaccurate

when the aperture field or sheet current cannot be ex-

pressed in terms of a single mode. The method is limited to

wavelengths greater than the resonant frequency and small

angles of incidence (d <45 O). For the rectangular mesh

with narrow strips (c/g > 0.9), the assumption that the
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Fig. 6. Transmittance curve for a square mesh at normaf incidence at an

air dielectric boundmy (n = 2.1) comparing the rigorous solution (solid
line) to the monomodaJ impedance approach (~.
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Fig. 7. Transmission curve for a strip grating comparmg waveguide
basis approach (solid line) with a polynomial basis method(o).

TEIO is the only mode becomes less accurate than using (1)

and (2).

IV. GENERAL-SHAPED APERTURE

When the shape of the aperture becomes anything other

than a strip, square, or a circle, it becomes extremely

difficult to find the waveguide or cr.urrent basis functions *

and E used to express the electric field or current. For

infinitesimally thin meshes, there is no need to use these

modes. Any set of independent functions that are continu-

ous over the aperture and satisfy the boundary conditions

on the aperture walls should be acceptable. This “section

will examine the use of some very simple functions for use

in a wide range of mesh structures.

One of the simplest set of possible basis functions is the

set of delta functions rS(x – x~ ) where the x~ are points in
the aperture. The method of moments then reduces to

least-square matching of the aperture field to the Floquet

field above the mesh. Solutions obtained using delta func-

tions are very sensitive to the positicming of the points x..

In addition, accurate solutions require very large numbers

of points and thus a very large matrix’(5) needs to be

inverted. The major advantages of using delta “functions is

that they can be easily used for any general-shaped aper-

ture.

An examination of a typical aperture field obtained

using traditional waveguide basis for a strip grating (Fig. 7

inset) shows that the field may be approximated by a

o.%-
2.0

Fig. 8. Transmission curve for meshes with square and circular holes

[14] comparing wavegnide basis approach (solid line) with a polynomial
basis method ( o).

simple polynomial expansion. The size of the matrix to be

inverted is equal to the number of basis functions required

to expand the field. It is important to exploit all symmetry

properties of the structure under consideration because

each symmetry reduces the size of the matrix by a factor of

two. For the configuration of Fig. 7, the electric field in the

aperture may be expanded as

where symmetry (for EinCident parallel to the x-axis) re-

quires that n be even. Fig. 7 shows that such a simple

expression for the aperture field, together with (5) and (6),

can produce extremely accurate results for the transmit-

tance even though the field differs slightly from the field

predicted using waveguide modes.

Polynomial expansions may also be used with great

success in doubly periodic meshes. In the case of a mesh

with square holes (Fig. 8), the following expression for the

two electric-field components may be used:

E. = ~ %xnmx ‘n+’y’m+’(y’-t)mn

2“‘m(x’-i)Ey = ~D.ngmrzx Y
mn

(12)

The allowed powers of x and y are determined from the

symmetry and the orientation of the incident E field

(parallel to the y-axis). The factor gm~ is chosen so that the

integral of the square of the basis functions is normalized.
If the functions are not normalized, the matrix (5) can

become unstable because of large variations in the magni-

tude of its elements. The factors in brackets assure that the

tangential field goes to zero on the waJls of the aperture at

x = + c/2 and y = i c/2. Fig. 8 shows that this poly-

nomial expansion gives excellent agreement with the results

predicted using the square waveguide modes.

For meshes with circular holes, the radial dependence

may be expressed in powers of r instead of the waveguide

mode Bessel functions. The allowed angular dependence is

chosen to take advantage of the x – y symmetry. The

integrals required to fill the matrix (eqs. (5)–(7)) may-be
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evaluated numerically using a modified Simpsons rule in-

tegration over the angular and radial variables. Fig. 8

demonstrates the accuracy of this expansion method for

circular holes placed in an equilateral array. If the structure

consists of metal plates instead of holes, then similar

expansions may be used to describe the current in the

-:plates.

s. . “There are a number of numerical checks that can be

“carried out to verify the solutions. Firstly, conservation of

energy requires that the energy carried away from the mesh

equals the energy incident. In this formulation, energy

conservation is an analytical result but is a good check of

the computer implementation. Another check, applicable

to square meshes, is the common phase properties of the

~H, DMn and in particular [15]c

Trans~ttance = sin’ (arg (C~.)). (13)

This provides a quick method of finding the transmittance

without having to completely solve the matrix equation

and reconstruct the Floquet fields. The solution may, also

be checked by comparing the aperture, fields with the

Floquet fields at the plane of the mesh. The numeric~

analysis of (6) suggests that continuity of the electric field

is not necessarily a strong test of the solution but continu-

ity of the normal magnetic field is a good measure of

completeness of the aperture basis functions. Completeness

of the Floquet modes can be checked with the following

identity [13]:

~ C;rc;$’f = II *m.*M. (14)
pqr aperture

This equation is an extension of the result obtained for use

with waveguide basis functions but does not require that

the basis functions be orthogonal or normalized over the

aperture. The identity is exact for an infinite number of.

independent basis functions and Floquet modes and holds

approximately when both series are truncated. Numerical

stability may be checked by looking at the determinant of

the matrix (5). This is- an easy step to do as part of the

matrix inversion. When the solution is unstable, the de-

terminant varies rapidly and the phase changes by 180°.

When the shape of the hole or plate becomes com-

plicated, it is no longer possible to find simple functions

defined over the entire aperture, which are continuous and

satisfy the boundary conditions. If the “aperture basis func-

tions are not continuous over the aperture, the resulting

discontinuity leads to spurious results. This problem can be

avoided by splitting the aperture into smaller regions and

requiring the functions defined over each region to vanish

on the boundaries. If the boundary of the region coincides

with the aperture wall, then only the tangential electric

field or the normal current must vanish.

To illustrate this technique, consider the cross-shaped

aperture. The aperture is split into a number of smaller

overlapping regions and the field is expanded in terms of
two-dimensional triangle functions. Fig. 9 shows good re-

sults using only a small number of functions. More accu-

rate results can be obtained by using a larger number of

smaller regions.

Fig. 9. Transmission curve for a meshes with cross-shaped holes com-
paring waveguide basis approach (solid line) with a two dimensional

triangular basis method (o).

This approach may be used to solve a large number of

boundary problems that have not been previously analyzed.

Unlike other methods, it makes no assumptions about the

form of the fields or currents and places no restrictions on

the size or shape of the hole. For example, some techniques

for analyzing loaded slots and crossed dipoles make re-

stricted assumptions about the currents or electric fields

present based on the stipulation that the aperture or plate

is narrow along one of its transverse directions [16], [17].

The time required to obtain the transmittance at a given

wavelength depends on the number of aperture modes,

which determines the number of linear equations needing

to be solved. Very quick run times can be achieved by

choosing a small number of good basis functions. In gen-

eral, run times are considerably shorter than for the rigor-

ous method using waveguide modes.

In the method of moments [18], the unknown field is

expanded in terms of a complete set of basis functions, and

the resulting equation is projected onto a set of trail

functions. Little work has been done on examining what

constitutes a good set of trial functions and what restric-

tions need to be placed on the basis functions. In the above

analysis, the trial functions and basis functions are the

same (Rayleigh-Ritz method). In certain applications, it

may be an advantage to use trial functions that differ from

the basis functions. For example, in the case of the cross,

step functions could be used as trial functions instead of

triangle functions.

V. CONCLUSIONS

The first part of this paper presents a simple technique

for calculating the effective impedance of a thin periodic

mesh. This refined monomodal impedance technique is

considerably faster and easier to use than rigorous moment

methods and more accurate and versatile than existing

approximation methods.
The later sections describe a number of ways of choosing

nonwaveguide basis functions for the current or electric

field. These functions- can be used to solve problems like

the strip grating, square hole mesh, and the circular hole

mesh. They can also be extended to solve mesh problems
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like the cross in which the wavegtiide modes are not readily

available.
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