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Approximation Techniques for Planar
Periodic Structures

RICHARD C. COMPTON, STUDENT MEMBER, IEEE, AND DAVID B. RUTLEDGE, MEMBER, IEEE

Abstract —The rigorous calculation of electromagnetic properties of
periodic meshes using moment methods requires considerable algebraic
work and computer resources. In this paper, a number of easy to use
approximation techniques for analyzing thin structures with square, rectan-
gular, and circular holes are presented. Formulas for the effective imped-
ance of these meshes are described which can easily take into account

oblique incidence and the presence of a dielectric substrate. In addition, -

techniques for analyzing more complex-shaped apertures such as a cross
are discussed. These methods are more accurate than existing approxima-
tion techniques and can be applied to a wide range of situations that could
not be handled before.

I. INTRODUCTION

ERIODIC MESHES are becoming increasingly im-
portant in the construction of microwave systems
[1]-[4]. To design these systems efficiently, it is essential to
be able to accurately predict mesh properties. The diffrac-
tion properties of meshes may be calculated very accurately
using the method of moments [5]-[7] in which the electro-
magnetic fields are expanded in terms of Floquet and
waveguide modes. Unfortunately, this method produces a
relatively complicated set of equations which must be
solved using a large computer. The difficulties involved
with the rigorous moment method has led to the develop-
ment of approximate methods for studying these meshes
(8], [91- i
A thin mesh may be modeled exactly by an impedance
shunted across a transmission line. The equivalent-circuit
model developed by Marcuvitz and later by Ulrich [2], [10],
[11] was one of the first approximation methods for calcu-
lating the equivalent shunt impedance of singly and doubly
periodic structures. This method is widely used because of
its simplicity but has many limitations. For a mesh with
square holes, the inductance is estimated by assuming its
long wavelength behavior is like a strip grating whose
inductance can be calculated using a conformal mapping
[12]. The capacitance is chosen so that the free-space
resonant wavelength is equal to the grid period. This
approach has several limitations. The inductance and reso-
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Fig. 1. Transmittance curves for normally incident radiation on a mesh
with varying thicknesses. The mesh is characterized by a period g,
thickness ¢, and a square hole size ¢. The monomodal calculations [3]
make a good approximation to the rigorous calculations [7] for thick-
nesses > 0.10 g. )

nance estimate are both very inaccurate, particularly when
the squares are small and a dielectric is present. In ad-
dition, the circuit model can only be applied to a small
number of geometries—strips or square holes with 90°
periodicity axes at normal incidence. For thick meshes,
good results have been obtained using methods based on
the assumption that most of the energy is carried by one
waveguide mode, all other modes being cut off [3]. For thin
meshes, the monomodal approximation is good only at
long wavelengths (see Fig. 1) because evanescent wave-
guide modes can carry energy through the mesh. If the hole
shape is anything other than a rectangle, circle, or strip,
moment methods that use waveguide modes as basis func-
tions become complicated because the field can no longer
be described in terms of simple waveguide modes {13]. The
following sections present a number of approximation
techniques for thin meshes which overcome the above
limitations. The accuracy of the techniques will be dis-
played by comparing the results with rigorous solutions
that are known to give excellent agreement with experi-
ment [3).

II. BACKGROUND THEORY

Meshes may be classified as inductive or capacitive
according to the long wavelength behavior of their equiv-
alent shunt impedance. For the inductive and capacitive
meshes of Fig. 2 at an air—dielectric interface (refractive
index n), the equivalent circuit model of Ulrich predicts
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Fig. 2. Geomeiry of inductive and capacitive meshes with square holes
and periodicity axes inclined at 90°.
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the following formula for energy transmittance [2], [12]:

4
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where w = g/A is the normalized frequency and «, is the
resonant frequency. The values X;/Z and X./Z are the
inductive and capacitive impedances normalized to the
impedance of free space Z. At long wavelengths (w — 0),
these impedances reduce to the strip grating impedances
[12]
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Note that X, /Z is unaffected by the presence of a dielec-
tric and X, /Z transforms like two capacitors in parallel.
For perfectly conducting meshes of infinitesimal thick-
ness, the method of moments reduces to the following

equations [5], [6]):
YMmE =1,

(5)

For the inductive mesh; the F,, represent expansion coeffi-
cients for the electric field where

= Z Z] (gpqr + ypqr)cpﬂ;jycp”z;r
rqr
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aperture

(6)

and, for the capacitive mesh, the F,, are coefficients in the
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current expansion with
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The @, , are the Floquet modes, the ¥™ waveguide aper-

ture modes, =™ are current modes and the £, . and y,,,
are the admittance of the Floquet modes on the two sides
of the mesh [5], [6]. The A, are the coefficients of the
incident field (» =1 is TE and r = 2 is TM). The solution
of these equations involves the calculation of the integrals
C or D and the inversion of matrix ¥ whose elements are
complex numbers. This requires considerable time and
computer resources but can be made much easier by mak-
ing a few simple approximations.

At wavelengths much longer than the grid period, the
matrix ¥ becomes dominated by the diagonal elements
and the elements related to the primary mode (m = 0 say).
Discarding all other terms results in a set of refined mono-
modal equations that may be solved analytically to yield
the following expression for F, [5]:

YOmIm
0_
-y X
mr;O
FO: o Z YOmymO' (8)
v - “mm
m re
m=#0

This may be used to calculate transmittance in a form
which reduces to (1) and provides a considerably more
accurate estimation of the long wavelength impedance than
(3). For a TE incident wave, in the limit when the primary
mode dominates, the terms in the sum of (8) are small and
the impedance reduces to (2) with

0 )2
7| Coon

Z |C 1[ V 2+qu

The a, and 7v,, describe the spatial dependence of the
Floquet modes [7], and the 3.’ denotes the p =0 g =0 term _
is not summed. This equation provides a very general and
accurate long wavelength mesh impedance for use with (1).
In addition, this analysis can be used to make a good
estimate of the frequency at which the mesh becomes
resonant. Numerical studies show that at approximately
the resonant frequency the matrix element Y% becomes
real so that X, x W 1/Im(Y %) becomes infinite. Equa-
tion (9) expresses the long wavelength inductance in terms
of a homogeneous, stationary function of the aperture
field. The following section will illustrate the accuracy and
versatility of this monomodal impedance method.

(©)
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Fig. 3. Comparison at normal incidence of monomodal impedance and
circuit model transmission curves with rigorous moment solutions.

III. CALCULATIONS

To check the approximation results, rigorous calcula-
tions [6], [7] were made using all waveguide modes up to

TEss and TMy;. All Floquet modes up to ‘/a;%—ypzq <

11(27/g) were included. The addition of more modes
made no significant change in the transmittance values.
The results were checked using conservation of energy,
Babinet’s principle, and reciprocity and are estimated to be
accurate to better than +0.02 in the transmittance. When
analyzing meshes with narrow metal strips (¢/g > 0.9), it
was found that a much larger number of TE/TM modes
were required to simulate the singularities at the metal
edges.

Fig. 3 demonstrates the monomodal impedance formula
(9) for a freestanding mesh with square holes. The funda-
mental propagating mode in the aperture is the TE,,
mode. The sum over Floquet modes in (9) converges rapidly.
For the results presented, p and ¢ are summed from —11
to -+11. The monomodal formula gives a better estimation
of impedance than Ulrich’s circuit model [1], [2] and pro-
vides better overall transmittance predictions. Further-
more, as the strips become wider, Ulrich’s equivalent-cir-
cuit model becomes more inaccurate because the circuit
impedance estimate gets worse and the resonance occurs at
longer wavelengths further from the grid period. On the
other hand, the monomodal impedance estimation (9) be-
comes better, and the resonant frequency can always be
accurately calculated. The monomodal impedance method
allows the accurate calculations of transmission curves
without large mainframes and long run times. Typical run
times on a VAX 11-750 are 60 s for a complete transmis-
sion curve.

The transmission curve of Fig, 4 is for a mesh with
periodicity axes inclined at 45°. Such a structure cannot be
analyzed with Ulrich’s equivalent-circuit theory. The re-
fined monomodal treatment gives an excellent impedance
value and a good estimate of the resonant frequency (Y %

purely real). Fig. 5 shows the same mesh for TE radiation

incident at 45°—oblique incidence is another situation
that could not be properly accounted for with existing
circuit theory. At oblique incidence, the transmission for-
mula (1) is modified since the impedance of a TE wave
changes from Z to Z/cos(8), where 8 is the angle that the
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Fig. 4. Transmittance curve for a square mesh at normal incidence with
periodicity axes inclined at 45° comparing the rigorous solution (solid
line) to the monomodal impedance approach (°).
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Fig. 5. Transmittance curve for a square mesh with periodicity axes
inclined at 45° and radiation incident at 45° comparing the rigorous
solution (selid line) to the monomodal impedance approach ().

magpnetic field makes to the plane of the mesh. If 4, and 6,
are the incident and transmitted angles then (1) becomes

T 4ncos(8,)cos(6,) . (10)
[cos(0,)+ncos(0,)]2+ (%)

A similar formula for a TM incident wave may be derived

by using Z-cos(8) for the transmission-line impedance.

The monomodal impedance method can also take into
account the presence of a dielectric. Fig. 6 shows the
transmittance curve for a mesh at a dielectric interface. The
long wavelength inductive mesh impedance is unchanged.
The dielectric alters the characteristic impedance on the
transmission side of the structure and shifts the resonant
wavelength. By modifying the transmission-line impedance,
it is also a simple matter to consider a dielectric slab [5]
and allow for absorption loss in the dielectric. This im-
proved impedance formula can also be applied to circular
holes or to any shaped hole or metal plate where the
primary energy transmission mode can be calculated. If a
more accurate estimation of the impedance is required then
more terms in the sum of (§) may be included.

The refined monomodal formula becomes inaccurate
when the aperture field or sheet current cannot be ex-
pressed in terms of a single mode. The method is limited to
wavelengths greater than the resonant frequency and small
angles of incidence (8 < 45°). For the rectangular mesh
with narrow strips (¢/g > 0.9), the assumption that the
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Fig. 6. Transmittance curve for a square mesh at normal incidence at an
air dielectric boundary (n = 2.1) comparing the rigorous solution (solid
line) to the monomodal impedance approach (o).
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Fig. 7. Transmission curve for a strip grating comparing waveguide
basis approach (solid line) with a polynomial basis method ().

TE,, is the only mode becomes less accurate than using (1)
and (2).

IV. GENERAL-SHAPED APERTURE

When the shape of the aperture becomes anything other
than a strip, square, or a circle, it becomes extremely
difficult to find the waveguide or current basis functions ¥
and = used to express the electric field or current. For
infinitesimally thin meshes, there is no need to use these
modes. Any set of independent functions that are continu-
ous over the aperture and satisfy the boundary conditions
on the aperture walls should be acceptable. This section
will examine the use of some very simple functions for use
in a wide range of mesh structures.

One of the simplest set of possible basis functions is the
set of delta functions 8(x — x,,) where the x, are points in
the aperture. The method of moments then reduces to
least-square matching of the aperture field to the Floquet
field above the mesh. Solutions obtained using delta func-
tions are very sensitive to the positioning of the points x,.
In addition, accurate solutions requijre very large numbers
of points and thus a very large matrix (5) needs to be
inverted. The major advantages of using delta functions is
that they can be easily used for any general-shaped aper-
ture. .

An examination of a typical aperture field obtained
using traditional waveguide basis for a strip grating (Fig. 7
inset) shows that the field may be approximated by a
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Fig. 8. Transmission curve for meshes with square and circular holes
[14] comparing waveguide basis approach (solid line) with a polynomial
basis method ().

simple polynomial expansion. The size of the matrix to be
inverted is equal to the number of basis functions required
to expand the field. It is important to exploit all symmetry
properties of the structure under consideration because
each symmetry reduces the size of the matrix by a factor of
two. For the configuration of Fig. 7, the electric field in the
aperture may be expanded as

E =) cx" (11)
where symmetry (for E, .., parallel to the x-axis) re-
quires that n be even. Fig. 7 shows that such a simple
expression for the aperture field, together with (5) and (6),
can produce extremely accurate results for the transmit-
tance even though the field differs slightly from the field
predicted using waveguide modes.

Polynomial expansions may also be used with great
success in doubly periodic meshes. In the case of a mesh
with square holes (Fig. 8), the following expression for the
two electric-field components may be used:

(4
2)

Ex — Zcmngmnx2n+ly2m+l(y2 _
mn

¢
3)
The allowed powers of x and y are determined from the
symmetry and the orientation of the incident E field
(parallel to the y-axis). The factor g,,, is chosen so that the
mtegral of the square of the basis functions is normalized.
If the functions are not normalized, the matrix (5) can
become unstable because of large variations in the magni-
tude of its elements. The factors in brackets assure that the
tangential field goes to zero on the walls of the aperture at
x=+c¢/2 and y=+c/2. Fig. 8 shows that this poly-
nomial expansion gives excellent agreement with the results
predicted using the square waveguide modes.

For meshes with circular holes, the radial dependence
may be expressed in powers of r instead of the waveguide
mode Bessel functions. The allowed angular dependence is
chosen to take advantage of the x—y symmetry. The
integrals required to fill the matrix (egs. (5)—(7)) may be

E,= ¥.D,,8,x " (x7 - (12)
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evaluated numerically using a modified Simpsons rule in-
tegration over the angular and radial variables. Fig. 8
demonstrates the accuracy of this expansion method for
circular holes placed in an equilateral array. If the structure

consists of metal plates instead of holes, then similar

expansions may be used to describe the current in the
plates

% . There are a number of numerical checks that can be

" ‘carried out to verify the solutions. Firstly, conservation of
energy requires that the energy carried away from the mesh
equals the energy incident. In this formulation, energy
conservation is an analytical result but is a good check of
the computer implementation. Another check, applicable
to square meshes, is the common phase properties of the
C,. D,, and in particular {15]

mn?®

(13)

Transmittance = sin (arg (C,,,))-

This provides a quick method of finding the transmittance

without having to completely solve the matrix equation
and reconstruct the Floquet fields. The solution may, also
be checked by comparing the aperture fields with the
Floquet fields at the plane of the mesh. The numerical
analysis of (6) suggests that continuity of the electric field
is not necessarily a strong test of the solution but continu-
ity of the normal magnetic field is 4 good measure of
completeness of the aperture basis functions. Completeness
of the Floquet modes can be checked with the following

identity [13]‘
]

aperture

M (14)
This equation' is an extension of the result obtained for use
with waveguide basis functions but does not require- that
the basis functions be orthogonal or normalized over the
aperture. The identity is exact for an infinite number of
independent basis functions and Floquet modes and holds
approximately when both series are truncated. Numerical
stability may be checked by looking at the determinant of
the matrix (5). This is"an easy step to do as part of the
matrix inversion. When the solution is unstable, the de-
terminant varies rapidly and the phase changes by 180°.
When the shape of the hole or plate becomes com-
plicated, it is no longer possible to find simple functions
defined over the entire aperture, which are continuous and
satisfy the boundary conditions. If the aperture basis func-
tions are not continuous over the aperture, the resulting
discontinuity leads to spurious results. This problem can be
avoided by splitting the aperture into smaller regions and
requiring the functions defined over each region to vanish

% GG =

pqrpqr

on the boundaries. If the boundary of the region coincides -

with the aperture wall, then only the tangential electric
field or the normal current must vanish.

To illustrate this technique, consider the cross-shaped
aperture. The aperture is split into a number of smaller
overlapping regions and the field is expanded in terms of
two-dimensional triangle functions. Fig. 9 shows good re-
sults using only a small number of functions. More accu-
rate results can be obtained by using a larger number of
smaller regions.
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Fig. 9. Transmission curve for a meshes with cross-shaped holes com-
paring waveguide basis approach (solid line) with a two dimensional
triangular basis method (e).

This approach may be used to solve a large number of
boundary problems that have not been previously analyzed.
Unlike other methods, it makes no assumptions about the
form of the fields or currents and places no restrictions on
the size or shape of the hole. For example, some techniques
for analyzing loaded slots and crossed dipoles make re-
stricted assumptions about the currents or electric fields
present based on the stipulation that the aperture or plate
is narrow along one of its transverse directions [16], [171.

" The time required to obtain the transmittance at a given
wavelength depends on the number of aperture modes,

_which determines the number of linear equations needing

to be solved. Very quick run times can be achieved by
choosing a small number of good basis functions. In gen-
eral, run times are considerably shorter than for the rigor-
ous method using waveguide modes.

In the method of moments [18], the unknown field is
expanded in terms of a complete set of basis functions, and
the resulting equation. is projected onto a set of trail
functions. Little work has been done on examining what
constitutes a good set of trial functions and what restric-
tions need to be placed on the basis functions. In the above
analysis, the trial functions and basis functions are - the
same (Rayleigh-Ritz method). In certain applications, it
may be an advantage to use trial functions that differ from
the basis functions. For example, in the case of the cross,

step functions could be used as trial functions instead of

triangle functions.

V.  CONCLUSIONS

The first part of this paper presents a simple technique
for calculating the effective impedance of a thin periodic
mesh. This refined monomodal impedance technique is
considerably faster and easier to use than rigorous moment
methods and more accurate and versatile than existing
approximation methods.

The later sections describe a number of ways of choosing
nonwaveguide basis functions for the current or electric,
field. These functions.can be used to solve problems like
the strip grating, square hole mesh, and the circular hole
mesh. They can also be extended to solve mesh problems
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like the cross in which the wavegiide modes are not readilty [17] C. Tsao and R. Mittra, “Spectral-domain analysis of frequency
available.
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